
ON TEE FLOW IN A DIFFUSOR IN THE PRESENCE 
OF A MAGNETIC FIELD 

(0 TECHENII V DIFFUZOBE V PRISUTSTVEE 

MAGNITNOGO POLIA) 

PIY Vo1.24. No.3, 1960, pp. 524-529 

A. B. VATAZHIN 

(MOSCOWR) 

(Received 28 January 1960) 

1. ‘Ihe steady floz of a viscous incompressible fluid in the presence of 

a magnetic field H is described by a system of magneto-hydrodynamic 
equations 

(vA)v= V(+-+)+vAv+rot.hx h 

div v = 0, div h = 0, rot(v x h)+v,Ah=O (1.1) 

Here vI is the “magnetic” viscosity, u is the conductivity of the 
medium, c is the velocity of light in vacuum, p0 is the pressure at any 
given fixed point of the flow; the remaining symbols are conventional. 

The system (1.1) serves for determining the velocity 5, the quantity 
5, h aving the dimension of velocity, and the quantity (pO - p)/p. 

In the case of motion in a plane, the independent variables would be 
the distance from the origin of coordinates r, and the polar angle 8, and 
the basic parweters muld be the coefficients of kinematic and magnetic 
viscosity v and vI. 

We assune that the flows considered are completely determined by the 
indicated set of parameters, several dimensionless constants 6, and also 
Q 1’ .**, Q, having dimensions 

‘Ihen, by use of the relations of the theory of similarity and dimen- 
sions [ 1 1 , the quantities to be determined vr, vg, hr, ho; and (po- p)/p 

765 



766 A.B. Va tazhin 

may be expressed as 

Here p. is the pressure at infinity; the functions f, 4, t,b, /3, and F 
depend on the dimensionless quantities 8, v,/v, 5, a,, .**, %I 

6i = Qir- (Pi -tzoi ) y(ii 

Just as in the book [l 1, we assme that pi + 2~i= 0. Then the 

dimensions of the quantities Qi consist of some power of the dimensions 

of the coefficient of kinematic viscosity V, and the functions f, (p, 3, 

p and F do not depend on r. Setting the Equations (1.2) into the System 

(l-l), we obtain the following system of ordinary differential equations: 

(p = "pO z const, ,R = PO-_ consl, IBo-$% +vV#/v=o 

1" -cp,f' + f" i- 'PoZ---2F + pOq = 0, F' -f- a/'-@ = 0 (1.3) 

Integration of the last equation of the System (1.3) gives 

F+2j-++=C (C= const) (1.4) 

Eliminating F, we obtain a system of the third order for determination 
of the functions f(S) and 41/(O) 

jll--'po~'-t_/"-~4ji_~j3~~-~"+~po2-2c=o 

fB6-4JYO+vm~lv=O (1.5) 

Eliminating f(S), we can reduce the System (1.5) to one nonlinear 

equation of the third order with respect to the function I+!J(@). 

Using the generalized Ohm's law, it is possible to show that the type 

of flow considered has an electric field vector equal to zero. It is 

possible to treat the motion as the flow of a liquid in a magnetic field 

with a source at the origin of coordinates flowing perpendicularly to 

the plane of r, 8. In this case, according to the law of Biot-Savart, 

?t6 = ho/r and the constant h, has the dimension of the coefficient of 

kinematic viscosity. 

2. We consider the flow from a source (or sink) between two plane 

walls tilted with respect to each other at an angle a (diffuser). We 

assume an infinitely conducting medium. 'Ibe magnetic field induces a 

current IO, flowing along the vertex of the diffusor angle. If the circu- 

lation velocity uB vanishes, the propagation of the liquid into the 

region occupied by the field is impossible, as follows from the second 
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equation of (1.5): since vlR = 0, /3,, + 0, #0 = 0, we obtain f’= 0, If we 
assume the possibility of the circulation velocity having the value 
v8 = r/ 2n r (for example, in the walls of the angle holes are made so 
as to permit liquid motion normal to the walls), then flow from the 
source (or out of the sink) can take place. For the function f(0) we ob- 
tain from the System (1.5) an equation of the second order 

f”+f’(Bo2-cp*2)l~o-ff2(Bo2-rp,2~/~*2+4f+~02-~C=0 (2.4) 

To solve this equation and determine the constant C, the condition is 
used that the liquid sticks to the wall, and also the discharge Q through 
the di ffusor is specified 

fb!11/24 = 0, 

+a/2 

s 
fd0 =$ 

--4/Z 
(24 

The solution of the problem is given by the formulas 

v, = +r (9% 
r 

%=G, h, = ,rf$-& f (‘3, he = c ;f& 
(2.3) 

PO-P 
P 

=~(c-2~+~) 

The quantities /3, and q& which enter EIquation (2.1) are expressed 
through the current I, and circulation I7 

Equation (2.1) becomes especially simple in the case cd), 

p0 = cpO (r = ~&I, / cb/$ 

and is easily integrated. For the velocity and the family of stream lines 
the expressions are obtained 

As is evident from (2.31, the vectors of velocity and magnetic field 
strength are collinear. 

3. The flow of a fluid with finite electrical conductivity into a 
diffusor with opening angle a is described by the system (1.5) in which 
it is necessary to set & = 0 (there is only radial velocity). For the 
solution of this system of the third order, and determination of the 
constant C which enters into Expression (1.4) for the determination of 
pressure, four conditions are necessary. Three of them are adherence of 
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the flow to the walls and the specification of the discharge rate (2.2). 

For the fourth condition, imposed on the induced magnetic field 9, it is 

possible, for example, to assume that the component Hr of the magnetic 

field is equal in magnitude and opposite in sign on the line r=== constant, 

at the points where the line intersects the diffusor. 

We introduce the designations 

Here R has the meaning of the hydrodynamic Reynolds number, rr is the 

magnetic Reynolds number, M is the Hartmann number. In view of the fact 
that for the quantities f(O) and $(S) which enter the System (L5), it is 

proper to set f(S) *R, $f@) ~~~~ it is convenient to go over to the 

functions u(O) and h(8) according to the formulas 

j(O) == Ru(O), (I, (0) = h&,~ (‘4 

Equations (1.5) and the boundary conditions are then reduced to the 

form 

U" + Ru2 + 4u + 4M2h'- 4R,N%.2-D = 0 , V+h’=O 

+-&+-A(-+), “7 a(B)dU_;~r31) 
---‘I? @ 

In the last expression of (3.1) the upper sign corresponds to a source, 

and the lower one, to a sink. The velocity, magnetic field, and pressure 

are computed by use of the formulas 

N _ +& v’6 
h m 

p,, -p v"R D (3.2) 
r- 

-----_E_ __ 
r P 9 ( 2 2u + 2M2R,h2) 

Finally the case will be considered of small conductivity R, << 1, 

where in the first equation of (3.1) and the relations (3.2) it is 

possible to neglect terms with the coefficient R,M2. Now the magnitude M2 
in the case of strong external fields can be large. 'Ihe motion is 

described by the system 
'!z a 

zLn + RU2j- 4(1- kP)u---I) = 0, U(-k$K)=O, \ udO=fl (3.3) 
-i/* CL 

and the pressure is expressed by 

PQ’O- P vaR D 2u 
-=-p- 2 P ( > (3.4) 
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Equation (3.3) is integrated in terms of elliptical functions. We are 

restricted to the simplest cases. 

4. We consider the flow of a fluid where the Reynolds number R is 
small. Equation (3.3) is 

For M2 < 1, we obtain 
pressions 

simplified and transformed into the Equation 

ZZO + 4 (1 - M2) U = D (4.1) 

for the function u(O) and the constant D the ex- 

cos 209 - cos oa 
D=+0 

402 cos oa 
U=.*O sin oa - oa cos oa ’ sin oa - oa cos oa (4.2) 

(02=== I-M2, aQx//) 

For M2 = 1, the solution of Equation (4.1) has the form 

U = * & (a2 - 482) 

.D+s 
(4.3) 

For M2 > 1, the solution of Equation (4.1) is given by the formulas 

U=At 
ch oa - ch 209 

aochoa-shoa 

D=Tu 
403 ch oa 

awch oa-shoa (4.4) 

‘lhe function u(O) for different Hartmann numbers, for the angle 
a = a/2 is shown in Fig. 1. ‘Ihe magnetic field, exerting a drag on the 
flowing liquid, produces a flatter velocity profile. In the limiting case 
of strong magnetic field forces (M2 >> 1) from (4.4) and (3.4), we obtain 

for the core of the flow approximately 

rr = Qlar, (p - p,,) / p = & 2Q2M2 / ah2 (4.5) 

We notice that the expressions (4.5) are kernels of the solution of 
the system 

-$- rv, = 0, H s2h e cr 

Actually, by virtue of the inequality R << 1 the inertial forces may 
be considered negligible compared with the viscous forces; and by virtue 
of M2 >> 1, the viscous forces in the kernel of the flow are less than 

the force of magnetic drag. 
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Now the induced magnetic field may not be considered in view of the 
assumption Rm << 1. In the inmediate proximity of the wall, where the 

forces of friction are considerable, the speed decreases toward zero in 

conformity with (4.4). Di verging flow in the case considered is charac- 
terized by a large pressure gradient that is negative; converging flow 

is characterized by a large positive pressure gradient. 

.M=O 

Fig. 1. 

5. From the theory of the motion of a nonconducting gas in a diffusor 
it is known that a symnetrical diverging flow is possible only for 

Reynolds numbers less than some critical value R = R*, for which friction 
on the walls of the diffusor is reduced to zero. Interaction of a con- 
ducting fluid with the magnetic field leads to an increase in the 

critical Reynolds number. For determination of the number R* from &a- 
tion (3.3), omitting a cumbersome calculation, it is possible to obtain 

R*a = 24F (Ic, K / 2) [E (k, i/z R) - F (k, ‘/z x) (1 - P)] (5.1) 

‘Ihe parameter k is found from the equations 

a 1/l - M2 = 2 r/l - 2PF (k, 1/z r) for 1VIz < 1 

CL JM2--1 = 2I/2k”- IF@, ‘jzx) for M2 > i (5.2) 

li?== 0.5 forM2 = 1 

E (k, ‘p) = 11/l -_2sin2cpdy 
0 
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The dependence of R* on the Hartmsnn number M2 for three values of 

the divergence angle a, obtained from (5.1)) is shown in Fig. 2. The 

velocity profile for a = n/4, M2 = 14.6 (R* = 43.3) is shown in Fig. 3. 

The critical value of Reynolds number increases with increase of the 

Hartmann number, and is reduced with increase in the angle. 

Fig. 2. Fig. 3. 

6. Symmetrical diverging flow, which does not occur at large Reynolds 

numbers in the absence of a magnetic field, is possible for large 

Reynolds numbers and Hartman numbers: R >> 1, M2 >> 1, M2 w R. 

Investigating Equation (3.3) for the given assumptions, and omitting 

a long computation, it is possible to obtain an expression for the velo- 

city profile and the pressure 

4 l-t - 3) 
(V, - - 2 + I/rZ)2,2JI -j-(r’y - - 2 - v/r ~ - 3y e-2+ - 2 1 (6*1) 

r= 
6a (AP - 1) 

R = 0 (1)s 9=(a/&_q 1/Rha-3), ~e+cx6* 

The indicated flow is possible if 6a(&P- 1)/R > 3 . From the ex- 
pression (6.1) it is evident that the flow has a negative pressure 

gradient, and the velocity of almost the entire current is equal to the 

value Q/r a, falling toward zero only at the wall. lhe result for the core 

of the flow* 

Q 
vi-=-&, 

p---PO. = (2~ - 314' 
P 6a2r2 

* For large Reynolds numbers the flow in the diffuser. in the framework 
of the theory of the boundary layer was investigated by Gaylftis [3 1. 
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is a solution of the system 

dc, 1 dp off*2 
~‘-&~_..-.___~ 

P dr c2p r’ 

since the viscous forces in the core of the flow may be neglected as a 
consequence of M2 >> 1, and in view of the relation M2 Q R the influence 

of the magnetic field and the inertial terms have the same order of 
magnitude. The expression for the velocity II_ in (6.1) gives the distribu- 
tion of velocity in the boundary layer formed. 
city for R = 400, y = 4, for an angle of n/2. 

Figure 4 shows the velo- 

Fig. 4. 
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